Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

A cyanide-bridged Fe ${ }^{\text {II }}-N d^{\text {III }}$ bimetallic assembly with a one-dimensional ladder-like chain structure

Yan Xu, ${ }^{\text {a }}$ Hu Zhou, ${ }^{\mathbf{b}}$ Ai-Hua Yuan, ${ }^{\mathbf{b}}$ Xiao-Ping Shen ${ }^{\text {a }}$ and Qian Zhang ${ }^{\mathbf{a}}$
${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
Correspondence e-mail: xiaopingshen@163.com

Received 13 January 2009
Accepted 14 February 2009
Online 10 April 2009

The title complex, catena-poly[[[(2,2'-bipyridine- $\left.1 \kappa^{2} N, N^{\prime}\right)$ tris-(methanol- $2 \kappa O$)(nitrato- $2 \kappa^{2} O, O^{\prime}$)- μ-cyanido-1:2C: N-cyanido$1 \kappa C$-iron(II)neodymium(III)]-di- μ-cyanido-1:2 $\left.C: N ; 2: 1^{\prime} N: C\right]$ methanol solvate], $\left\{\left[\mathrm{Fe}^{\mathrm{II}} \mathrm{Nd}^{\mathrm{III}}(\mathrm{CN})_{4}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{CH}_{3}-\right.\right.\right.$ $\left.\left.\mathrm{OH})_{3}\right] \cdot \mathrm{CH}_{3} \mathrm{OH}\right\}_{n}$, is made up of ladder-like one-dimensional chains oriented along the c axis. Each ladder consists of two strands based on alternating $\mathrm{Fe}^{\mathrm{II}}$ and $\mathrm{Nd}^{\mathrm{III}}$ centers connected by cyanide bridges. Furthermore, two such parallel chains are connected by additional cyanide cross-pieces (the 'rungs' of the ladder), which likewise connect $\mathrm{Fe}^{\mathrm{II}}$ and $\mathrm{Nd}^{\mathrm{III}}$ centers, such that each $\left[\mathrm{Fe}(\mathrm{CN})_{4}(\text { bipy })\right]^{2-}$ unit (bipy is $2,2^{\prime}$-bipyridine) coordinates with three $\mathrm{Nd}^{\mathrm{III}}$ centers and each $\mathrm{Nd}^{\text {III }}$ center connects with three different $\left[\mathrm{Fe}(\mathrm{CN})_{4}(\text { bipy })\right]^{2-}$ units. In the complex, the iron(II) cation is six-coordinated with a distorted octahedral geometry and the neodymium(III) cation is eightcoordinated with a distorted dodecahedral environment.

Comment

There has been growing interest in the preparation and study of mixed lanthanide-transition metal compounds because lanthanide ions have a rich coordination chemistry with high coordination numbers and significant coordination flexibility, which often leads to unanticipated but remarkable structures (Huang et al., 2008; Zhao et al., 2007; Yeung et al., 2006). A few supramolecular materials have been reported combining hexacyanidometalate ions, $\left[M(\mathrm{CN})_{6}\right]^{3-}(M=\mathrm{Fe}$ and Cr$)$, or octacyanidometalate ions, $\left[M(\mathrm{CN})_{8}\right]^{3-/ 4-}(M=\mathrm{Mo}, \mathrm{W}$ and Nb), as building blocks with lanthanide ions (Li et al., 2008; Sun et al., 2007; Przychodzen et al., 2007). However, as far as we know, examples of $3 d-4 f$ cyanide-bridged coordination polymers that incorporate diamagnetic $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{CN})_{4}(L)\right]^{2-}[L$ is 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen)] building blocks (Zhao, Wang \& Fang, 2004; Zhao, Wang, Fang \& Chen,
2004) are rare. We report here an interesting one-dimensional ladder-like $3 d-4 f$ cyanide-bridged coordination polymer, (I), based on the $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{CN})_{4}(\text { bipy })\right]^{2-}$ building block.

The asymmetric unit in the structure of (I) comprises one $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{CN})_{4}(\text { bipy })\right]^{2-}$ anion, one $\left[\mathrm{Nd}^{\mathrm{III}}\left(\mathrm{NO}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{3}\right]^{2+}$ cation and one methanol solvent molecule (Fig. 1). Selected geometric parameters are given in Table 1. The crystal structure of (I) consists of one-dimensional ladder-like bimetallic neutral chains, $\left\{\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{CN})_{4}(\text { bipy })\right]\left[\mathrm{Nd}^{\mathrm{III}}\left(\mathrm{NO}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{3}\right]\right\}_{n}$, built up from alternating $\mathrm{Fe}^{\mathrm{II}}$ and $\mathrm{Nd}^{\mathrm{III}}$ metal centers linked through the cyanide bridges (Fig. 2). The ladder-like bimetallic chains contain centrosymmetric $\mathrm{Fe}_{2} \mathrm{Nd}_{2}$ rectangular motifs. The $\left[\mathrm{Fe}(\mathrm{CN})_{4}(\text { bipy })\right]^{2-}$ fragment exhibits a distorted octahedral structure consisting of two N atoms from a planar bipy ligand and four C atoms from four cyanide groups. The small bite angle subtended by the chelating bipy group [80.19 (16) ${ }^{\circ}$ for $\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{N} 2$] is one of the main factors accounting for

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity. [Symmetry codes: (i) $x, y, z-1$; (ii) $-x+1,-y,-z+1$; (iii) $x, y, z+1$.]
this distortion. The bipy $\mathrm{Fe}-\mathrm{N}$ bond distances [2.003 (4) and 1.995 (4) \AA] are practically the same as those observed in the low-spin iron(II) compound $\mathrm{K}_{2}\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{CN})_{4}(\right.$ bipy $\left.)\right] \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$ [1.987 (4)-2.003 (4) \AA; Nieuwenhuyzen et al., 1998] and in the mononuclear $\left(\mathrm{PPh}_{4}\right)\left[\mathrm{Fe}(\mathrm{CN})_{4}(\right.$ bipy $\left.)\right]$ and the trinuclear $\left[\left\{\mathrm{Fe}^{\mathrm{III}}(\mathrm{CN})_{4}(\text { bipy })\right\}_{2} M^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ species $(M=\mathrm{Mn}$ or Zn ; Lescouezec et al., 2002). Three of the four cyanide groups of the $\left[\mathrm{Fe}(\mathrm{CN})_{4}(\text { bipy })\right]^{2-}$ unit in (I) are bridging, while the fourth is terminal. The $\mathrm{Fe}-\mathrm{C}-\mathrm{N}$ angles for both terminal [176.6 (4) ${ }^{\circ}$] and bridging [175.2 (4), 179.0 (5) and $\left.179.4(5)^{\circ}\right]$ cyanide groups deviate slightly from strict linearity. Each $\mathrm{Nd}^{\mathrm{III}}$ cation is eight-coordinated by two O atoms from the NO_{3} group, three O atoms from three $\mathrm{CH}_{3} \mathrm{OH}$ units and three N atoms from three cyanide ligands, to give a distorted dodecahedral $\mathrm{NdN}_{3} \mathrm{O}_{5}$ coordination environment (Fig. 1). The $\mathrm{Nd}-\mathrm{O}$ bond lengths fall within narrow ranges [2.494 (3)2.542 (3) \AA for nitrate $\mathrm{Nd}-\mathrm{O}$ and 2.462 (3) -2.499 (3) \AA for methanol $\mathrm{Nd}-\mathrm{O}$. The cyanide $\mathrm{Nd}-\mathrm{N}$ bond distances [2.459 (4)-2.509 (4) \AA] are somewhat shorter than those in $\left\{\left[\mathrm{Ru}(\mathrm{CN})_{4}(\text { phen })\right]_{3}\left[\mathrm{Ln}(\text { terpy })\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{2} \cdot n \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}[2.530$ (9)2.548 (11) \AA; Baca et al., 2007]. The nitrate ion acts as a

Figure 2
The one-dimensional chain of (I). H atoms have been omitted for clarity. [Symmetry code: (ii) $-x+1,-y,-z+1$.]

Figure 3
A schematic representation of the two-dimensional structure formed via hydrogen bonds (broken lines) between the bimetallic chains of (I). H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (ii) $-x+1,-y,-z+1$; (iv) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.]
bidentate ligand toward $\mathrm{Nd}^{\text {III }}$ through two of its three O atoms, which is different from previously reported lanthanidetransition metal complexes (Yuan et al., 2004; Liu et al., 2008), in which a nitrate ion coordinated to the lanthanide ion acts as a monodenate ligand.

The angles of the cyanide- $\mathrm{Nd}^{\text {III }}$ interactions deviate from linear $\left[\mathrm{Nd} 1{ }^{\mathrm{ii}}-\mathrm{N} 3-\mathrm{C} 11=169.3(4)^{\circ}\right.$, $\mathrm{Nd} 1-\mathrm{N} 6-\mathrm{C} 14=$ $171.1(4)^{\circ}$ and $\mathrm{Nd} 1-\mathrm{N} 5-\mathrm{C} 13=163.2(4)^{\circ}$; symmetry code: (ii) $-x+1,-y,-z+1$; Fig. 2]. The Fe $\cdots \mathrm{Nd}$ separations across cyanide bridges are 5.499 (4), 5.518 (5) and 5.452 (4) \AA, in good agreement with those in $\left\{\left[\mathrm{Ru}(\mathrm{CN})_{4}(\text { bipy })\right]_{3}[\mathrm{Ln}(\right.$ terpy $)-$ $\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{2} \cdot n \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}$ (Baca et al., 2007). The uncoordinated methanol solvent molecules are involved in hydrogen-bonding interactions with the one terminal cyanide group and a coordinated methanol molecule from another $\left[\mathrm{Nd}^{\mathrm{III}}\left(\mathrm{NO}_{3}\right)\right.$ $\left.\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{3}\right]^{2-}$ unit (Table 2).

Adjacent ladder-like chains are also held together by hydrogen bonds between the terminal cyanide ligands of the $\left[\mathrm{Fe}(\mathrm{CN})_{4}(\text { bipy })\right]^{2-}$ units in one chain and the OH donors of $\mathrm{CH}_{3} \mathrm{OH}$ ligands from $\left[\mathrm{Nd}^{\mathrm{III}}\left(\mathrm{NO}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{3}\right.$] units in neighboring chains (Table 2). From this arrangement, a twodimensional structure is formed (Fig. 3).

Experimental

Red-brown prismatic crystals of (I) were obtained by slow diffusion of a methanolic solution of $\mathrm{K}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{4}(\right.$ bipy $\left.)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol})$ and an aqueous solution of $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol})$ through a H-tube at room temperature. The resulting crystals were suitable for singlecrystal X-ray diffraction analysis. The product was insoluble in water and methanol.

Crystal data

$\left[\mathrm{FeNd}(\mathrm{CN})_{4}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)-\quad \beta=103.099\right.$ (2) ${ }^{\circ}$
$\left.\left(\mathrm{CH}_{4} \mathrm{O}\right)_{3}\right] \cdot \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=650.53$
Monoclinic, $P 2_{1} /{ }_{c}$ 。
$a=12.9908$ (17) \AA
$b=18.311$ (3) \AA
$c=10.9171(14) \AA$

Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\text {min }}=0.545, T_{\text {max }}=0.619$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.087$
$S=1.09$
4955 reflections
$\beta=103.099(2)^{\circ}{ }^{\circ}$
$V=2529.3(6) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=2.65 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
$0.26 \times 0.22 \times 0.20 \mathrm{~mm}$

19739 measured reflections 4955 independent reflections 3841 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.044$

H atoms attached to C atoms of the bipy ligand were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.96 \AA)$ and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The hydroxy H atoms of the methanol molecules were located in a difference Fourier map and refined as riding, with $\mathrm{O}-\mathrm{H}$ restraints $(0.97 \AA$ for $\mathrm{O} 1-\mathrm{H}, 0.93 \AA$ for $\mathrm{O} 2-\mathrm{H}$ and $\mathrm{O} 3-\mathrm{H}$, and $0.96 \AA$ for $\mathrm{O} 7-\mathrm{H})$, and with $U_{\text {iso }}(\mathrm{H})=$

Table 1
Selected bond lengths (\AA).

$\mathrm{Fe} 1-\mathrm{C} 11$	$1.881(5)$	$\mathrm{Nd} 1-\mathrm{N} 5$	$2.509(4)$
$\mathrm{Fe} 1-\mathrm{C} 12$	$1.896(4)$	$\mathrm{Nd} 1-\mathrm{N} 6$	$2.465(4)$
$\mathrm{Fe} 1-\mathrm{C} 13$	$1.922(5)$	$\mathrm{Nd} 1-\mathrm{O} 1$	$2.462(3)$
$\mathrm{Fe} 1^{\mathrm{i}}-\mathrm{C} 14$	$1.930(5)$	$\mathrm{Nd} 1-\mathrm{O} 2$	$2.483(3)$
$\mathrm{Fe} 1-\mathrm{N} 1$	$2.003(4)$	$\mathrm{Nd} 1-\mathrm{O} 3$	$2.499(3)$
$\mathrm{Fe} 1-\mathrm{N} 2$	$1.995(4)$	$\mathrm{Nd} 1-\mathrm{O} 4$	$2.542(3)$
$\mathrm{Nd} 1-\mathrm{N} 3^{\mathrm{ii}}$	$2.459(4)$	$\mathrm{Nd} 1-\mathrm{O} 5$	$2.494(3)$

Symmetry codes: (i) $x, y, z-1$; (ii) $-x+1,-y,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O} 7^{\text {ii }}$	0.97	2.11	2.713 (4)	119
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 4^{\text {iv }}$	0.93	2.23	2.773 (5)	117
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{~N} 4^{\text {iv }}$	0.93	1.90	2.786 (5)	159

Symmetry codes: (ii) $-x+1,-y,-z+1$; (iv) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.
$1.2 U_{\mathrm{eq}}(\mathrm{O})$ for $\mathrm{O} 1, \mathrm{O} 2$ and O 3 , and $1.5 U_{\mathrm{eq}}(\mathrm{O})$ for O 7 . The methyl H atoms of the methanol molecules were placed geometrically $(\mathrm{C}-\mathrm{H}=$ $0.93 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Advanced Talent Foundation of Jiangsu University (grant No. 05JDG043) and the Foundation
of the State Key Laboratory of Coordination Chemistry for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SF3099). Services for accessing these data are described at the back of the journal.

References

Baca, S. G., Adams, H., Sykes, D., Faulkner, S. \& Ward, M. D. (2007). Dalton Trans. pp. 2419-2430.
Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Huang, Y. F., Wei, H. H. \& Katada, M. (2008). J. Coord. Chem. 61, $2683-$ 2689.

Lescouezec, R., Lloret, F., Julve, M., Vaissermann, J. \& Verdaguer, M. (2002). Inorg. Chem. 41, 821-826.
Li, J. R., Chen, W. T., Tong, M. L., Guo, G. C., Tao, Y., Yu, Q., Song, W. C. \& Bu, X. H. (2008). Cryst. Growth Des. 8, 2780-2792.
Liu, M., Yuan, W. B., Zhang, Q., Yan, L. \& Yang, R. D. (2008). Chin. J. Appl. Chem. 25, 1194-1196.
Nieuwenhuyzen, M., Bertram, B., Gallagher, J. F. \& Vos, J. G. (1998). Acta Cryst. C54, 603-606.
Przychodzen, P., Pelka, R., Lewinski, K., Supel, J., Rams, M., Tomala, K. \& Sieklucka, B. (2007). Inorg. Chem. 46, 8924-8938.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sun, X. R., Chen, Z. D., Wang, M. W., Wang, B. W., Yan, F. \& Cheung, K. K. (2007). Chin. J. Chem. 25, 329-336.

Yeung, W. F., Lau, T. C., Wang, X. Y., Gao, S., Szeto, L. \& Wong, W. T. (2006). Inorg. Chem. 45, 6756-6760.
Yuan, W. B., Yan, L. \& Yang, R. D. (2004). Chin. J. Appl. Chem. 20, 829-831.
Zhao, H. H., Lopez, N., Prosvirin, A., Chifotides, H. T. \& Dunbar, K. R. (2007). Dalton Trans. pp. 878-888.
Zhao, Q. H., Wang, Q. H. \& Fang, R. B. (2004). Transition Met. Chem. 29, $144-$ 148.

Zhao, Q. H., Wang, Q. H., Fang, R. B. \& Chen, Z. D. (2004). Chin. J. Chem. 22, 264-267.

